

Suppose that we have a cube with an edge of size 1 unit and with vertices aligned along the x, y and z axis. According to Pythagora's theorem the blue diagonal of the "front" face has size $\sqrt{2}$. Between (1) and (2) we perform a 45° rotation along the x axis.
Looking at the cube along the y axis we have picture (2) showing a rectangle of edges 1 and $\sqrt{2}$. We now search which rotation of angle α around the y axis will allow to have the main diagonal of the cube aligned around the z axis as in figure (3) and (3).
(2)

(3)
x

To find this angle α, an easy way is to notice first using picture (3) that it is equal to the angle β between the rightmost edge of the rectangle and the z axis: $\alpha+\gamma=90^{\circ}$ (because the axis are perpendicular) and $\gamma+\beta=90^{\circ}$ (because we have a rectangle) thus $\alpha=\beta$.

Then using the trigonometry formulaes in a right triangle, we have:

$$
\begin{gathered}
\tan (\alpha)=\frac{\text { opposite }}{\text { adjacent }}=\frac{1}{\sqrt{2}} \\
\alpha=\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \simeq 35.26438968^{\circ} \quad(0.61547970867 \mathrm{rad})
\end{gathered}
$$

Thus, to align the main diagonal of the cube with the z axis you have to rotate around the x axis by 45°, then rotate around the y axis by -35.264°.

