
Julia Inverse Iterative Method

Alain Brobecker

1. Squareroot of a complex number

Given a+ ib ∈ C we search for x+ iy ∈ C such that a+ ib = (x+ iy)2.

a + ib = (x+ iy)2 ⇐⇒ a + ib = x2 + 2ixy − y2 ⇐⇒
{

x2 − y2 = a

2xy = b

⇐⇒

x2 = a + y2

4x2y2 = b2

sgn(x)× sgn(y) = sgn(b)
⇐⇒

x2 = a+ y2

4y4 + 4ay2 − b2 = 0 (1)
sgn(x)× sgn(y) = sgn(b) (2)

To solve (1) we compute the discriminant ∆ = 16a2 + 16b2 > 0 and then

y2 =
−4a±

√
16a2 + 16b2

8
=

−a±
√
a2 + b2

2

Since
√
a2 + b2 > |a| and since y2 > 0 we have:

y2 =

√
a2 + b2 − a

2
, x2 =

√
a2 + b2 + a

2

Mixing this solution of (1) with (2) we finally conclude that:

a+ ib = (x+ iy)2 ⇐⇒

x = ±
√√

a2 + b2 + a

2

y = ±
√√

a2 + b2 − a

2

sgn(x)× sgn(y) = sgn(b)

Notes:

◮ If x 6= 0 (which is a sure thing if b 6= 0) we can use y =
b

2x
in order to replace a

squareroot and sign computation by a division.
◮ If (x+ iy)2 = a+ ib then (−y + ix)2 = −a− ib.
⊲ If a = b = 0 then x = y = 0.

⊲ If a = 0 and b 6= 0 then x = ±
√

|b|
2

and y = ±
√

|b|
2

in respect to (2).

⊲ If b = 0 and a > 0 then x = ±√
a and y = 0.

⊲ If b = 0 and a < 0 then y = ±
√
−a and x = 0.

1

2. Application to Julia IIM
For a given polynomial complex function f the Julia set of f is the boundary of the set
of points which converge to infinity under iteration. The functions generally drawn on
computer are f(z) = z2 + c.
Generally, for every point M ∈ C of the screen we compute fk(M) for k < n. As soon as
|fk(M)| > 1 we know it will diverge and we print it on screen with color k.
But the Julia set can also be obtained by backward iteration, ie the Julia set is the set of

limit points of
⋃

n∈N

f−n(z).

So we need to compute iterations of f−1(z) =
√
z − c , and since this has two solutions

the number of branches at iteration n will be 2n. But for practical implementation we
stop computing a branch if the point approximated by f−k(z) is already drawn on screen.

3. Algorithm
oldx=0

oldy=0

NbPointsInStack=0

GOTO ProcessOnePoint

GetPointFromStack

if NbPointsInStack=0 then END

get (oldx;oldy) from stack

NbPointsInStack-=1

ProcessOnePoint

x=oldx-cx

y=oldy-cy

t=sqrt((x+sqrt(x*x+y*y))/2)

if t=0 then

newy=sqrt(-x)

newx=0

else

newx=t

newy=y/(2*newx)

endif

if (newx;newy) is already drawn then GOTO GetPointFromStack

if NbPointsInStack>Threshold then draw (newx;newy) and (-newx;-newy)

put (newx;newy) in stack

NbPointsInStack+=1

oldx=-newx

oldy=-newy

GOTO ProcessOnePoint

2

